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Abstract. Neutron–rich nuclei with a closed neutron shell represent chains of waiting–point nuclei in the
astrophysical r–process. Details of their nuclear structure like separation energies, shell structure and β−–
decay half–lives have a dramatic influence on element abundances calculated from r–process simulations.
Actual supernova scenarios take place at finite temperature. To investigate the influence of finite temper-
ature on binding energies and shell gaps, i.e. the second derivative of the binding energy, we calculate the
shell gaps in the range of interest and slightly beyond, i.e. 0 ≤ kBT ≤ 0.8 MeV. Basis of the description
is the self–consistent Skyrme–Hartree–Fock model and an extension of BCS pairing to finite temperature
using a natural orbital representation.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 21.60.-n Nuclear-structure models and
methods

1 Introduction

Models for the nucleosynthesis in astrophysical objects
predict that the formation of most heavy nuclei with
masses A > 60 occurs in nature in two distinct neutron–
capture processes, the s–process in red giants and the r–
process which takes place in supernovae [1–4]. The produc-
tion rates and final abundances of the various elements
depend, of course, crucially on the properties of the in-
volved nuclei, most of all on their binding energies and
β−–decay half–lives. While the s–process stays fairly close
to the valley of stability, the r–process moves through the
region of β−–unstable nuclei far away from stability, most
of them still experimentally unavailable, although there is
some recent progress for the identification [5] and the mea-
surement of some of the β−–decay properties [6] of some
r–process nuclei near the N = 50 neutron shell, where the
r–process path comes close to the stability line.

Thus r–process simulations need to rely on theoreti-
cal input for the necessary nuclear physics information. It
turns out that various available nuclear mean–field mod-
els, both self–consistent ones and more phenomenological
approaches like the macroscopic–microscopic models, still
provide much different predictions for the abundances [7]
and there is presently much activity to pin down the nu-
clear models more precisely in order to enhance their pre-
dictive power. All of such considerations up to now have
dealt with information from the nuclear ground state. Ac-
tual r–process scenarios, however, take place at finite tem-

peratures in the range of typically 0.1 < kBT < 0.4 MeV
[8]. It is the aim of this paper to investigate the effect
of finite temperature on nuclear binding energy system-
atics.

More specifically, we are going to investigate the tem-
perature dependence of the nuclear binding energy and de-
rived observables, i.e. the two–nucleon separation energy
and the two–nucleon shell gap. The latter quantities play
a crucial role in determining the abundances, particularly
near neutron shell closures which constitute a chain of
“waiting–point” nuclei responsible for the r–process peaks
in the element abundances [7].

As basis for the description, we take the Skyrme–
Hartree–Fock (SHF), for an early review see [9], com-
plemented with the BCS pairing model. This is a
self–consistent, non–relativistic nuclear mean–field model
which is very successful in describing bulk properties of
stable nuclei, see e.g. [10]. The model can be used safely
for finite temperatures if they are not too large [11], and
we are here certainly on the safe side when we consider
temperatures below 1 MeV. In fact, SHF at finite temper-
atures has been investigated several times before [12–14],
but with much different bias, mainly concerned with the
breakdown of shell structure at higher kBT ≈ 2 MeV [12,
13] or with equilibrium in the presence of a dense neutron
vapor [14]. The aim here is to look at lower temperatures
and at effects which are, at first glance, less obvious, but
which turn out at the end to be important for the stellar
scenarios.
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The paper is outlined as follows: In Sect. 2, we present
the formal framework of our mean–field+BCS treatment
at finite temperature. In Sect. 3, we present and discuss
the results considering as test cases the tin isotopes and
the N = 82 isotones.

2 Formal framework

2.1 The energy functionals

The investigation requires first an extension of the stan-
dard SHF+BCS treatment to finite temperatures. This
was already done in [13] using finite temperature HFB
cranking with Surface Delta Interaction in a two level
model with total isospin 0 and 1. We prefer, however, a
variational formulation in terms of natural orbitals, simi-
lar as it has been used for zero temperature in [15]. This
gives simpler access to the pairing equations in case of
more general pairing functionals as we use it here. And it
is particularly convenient in connection with codes where
the wavefunctions are represented on a grid in coordinate
space.

The formal derivations take as starting point an effec-
tive energy functional of the form

E = Emf [ρ, τ,J︸ ︷︷ ︸
ρ̂

] + Epair[χ]− Ec.m. , (1)

that is the sum of the mean–field energy functional Emf ,
the pairing energy functional Epair and the correction for
spurious center–of–mass motion Ec.m.. For the mean–field
functional Emf [ρ̂] we employ the Skyrme energy functional
which can be formulated in terms of the local density ρ,
local kinetic energy density τ , and local spin–orbit current
J . As we are here not interested in unfolding all details
of this rather elaborate functional [16], we abbreviate the
dependence with the most general case, the full one–body
density matrix

ρ̂ ≡ ρ(rσ, r′σ′) = 〈ψ̂†(r′, σ′)ψ̂(r, σ)〉 . (2)

For the present purposes, it suffices to know that the func-
tional variation yields the mean–field Hamiltonian

ĥmf =
δEmf

δρ̂
. (3)

More formal details can be found, e.g., in [16]. We will
use actually the parameterizations SkT6 [17], SkI4 [18],
as well as SLy4 [19] and postpone a brief summary of
their features at the beginning of Sect. 3.

The pairing functional used in this investigation

Epair[χ] =
1
4

∑
q∈p,n

Vpair,q

∫
d3r χ∗q(r)χq(r) , (4)

can be derived from a local, two–body like–particle pairing
interaction Vpair,q δ(r− r ′) [20,21]. Note that the pairing

energy functional decouples in the sum of separate contri-
butions from protons and neutrons. Therefore the pairing
and mean–field equations will decouple as well into equa-
tions for protons and neutrons. We will omit the isospin
index in the following. The pairing functional depends on
the local part of the pair density χ only

χ(r) =
∑
σ=±1

(−σ)〈ψ̂(r,−σ)ψ̂(r, σ)〉 . (5)

The variation of the pairing energy functional with respect
to χ yields the pairing potential

∆(r) =
δEpair

δχ(r)
(6)

which turns out to be a local potential for the present
form of the pairing functional. The mean–field Hamilto-
nian ĥmf and the pairing potential ∆ do not necessarily
commute with each other. The BCS approximation forces
commensurability in that it considers only those elements
of ∆ which are diagonal in the eigenbasis of ĥmf . The cor-
responding approximative steps follow in the course of the
further derivation.

Finally we have to take care of the center-of-mass cor-
rection and it is to be done with the same recipe as was
used when designing the forces. Thus in case of SkI4, we
subtract

Ec.m. =
〈P̂2

c.m.〉
2mNA

. (7)

after variation, i.e. after having solved the variational
mean–field equations (to avoid the costly treatment of a
two-body operator during variation). The actual compu-
tation of this expectation value has to be revised in view
of the mix of temperature and pairing, for details see ap-
pendix A. In case of SkT6 and SLy4, we consider only
the diagonal part of the correction, i.e. P̂2

c.m. −→
∑
i p̂

2
i ,

which amounts to change the nucleon mass as m −→ m −
m/A [9].

2.2 Energy functionals at finite temperature

The energy functional (1) is the correct starting point for
a variational formulation at zero temperature. At finite
temperature T , one should invoke the Gibbs’ free energy
E − λN − TS instead. We resolve that here in a two–
step process. First we consider a given mean–field and
determine the appropriate grand canonical ensemble as-
sociated with it (which essentially means to maximize the
entropy). This provides an expression of the densities in
terms of wavefunctions, pairing amplitudes, and temper-
ature. These are inserted then into the energy functional
(1) and the equations for ϕα and vα are determined vari-
ationally, see [22] for a discussion in the framework of the
Hartree–Fock model without pairing.

The one–body density matrix and the and local pairing
density are still calculated from (2) and (5), but the brack-
ets mean now quantum mechanical expectation value and
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ensemble average at finite temperature T . The standard
steps of BCS theory at finite temperature yield then for
the one–body density matrix

ρ(r, σ; r′, σ′) =
∑
α≷0

nα ϕα(r, σ)ϕ∗α(r′, σ′) (8)

where the nα are the occupation probabilities determined
by the pairing correlations and the finite temperature

nα =
1

1 + exp {βeα}
+ tanh

{
βeα

2

}
v2
α . (9)

The pair density in a thermal ensemble emerges as

χ(r) = −2
∑
α>0

χα |ϕα(r)|2 (10)

where the χα are the pair occupation probabilities deter-
mined by the pairing correlations and the finite tempera-
ture

χα = tanh
{
βeα

2

}
uαvαfα . (11)

The factor fα therein regulates the space of single particle
states which is active in pairing. It contains the quasipar-
ticle energy which is defined as

eα = (εα − λ)
(
u2
α − v2

α

)
+ 2∆αfαuαvα . (12)

For the selection of this pairing phase space we use a
smoothened Woods–Saxon cut–off factor

fα =
1

1 + exp{(εα − λ−∆E) /µ} . (13)

The parameters µ and ∆E are determined self–consistent
with

µ =
∆E

10
, (14)

Nact = N + 1.65N2/3 =
∑
α≷0

fα (15)

where Nact is the number of effective pairing states and
N the number of nucleons [23].

These expressions (8) and (10) are to be inserted into
the energy functional (1) which provides then the im-
plicit dependence on the single–particle states ϕα and the
pairing amplitudes vα (with the dependent amplitudes
uα =

√
1− v2

α) on the temperature. The optimal wave-
functions and amplitudes are to be determined by mini-
mization of of the total energy (1) with a constraint on
particle number. During this variation, we neglect the im-
plicit dependence of the phase space cut-off (13) on ϕ†α
and vα because possible contributions therefrom are very
small. Variation with respect to ϕ†α yields(

(ĥmf − λ)nα + χα∆(r)︸ ︷︷ ︸
≈0

)
ϕα(r) =

∑
β≷0

λαβ ϕβ(r) . (16)

As in case of zero temperature, the BCS approximation
is obtained by neglecting the contribution from the pair-
ing energy functional the left–hand–side of [23]. Within
this approximation, λαβ can be diagonalized by a uni-
tary transformation of the single–particle wavefunctions
with the eigenvalues nα(εα − λ) leading to the familiar
equation-of–motion

ĥmfϕα = εαϕα . (17)

The generalized gap equation is obtained from variation
of the particle–number constrained energy functional with
respect to v2

α(
εα − λ−

∆αfα(1− 2v2
α)

2
√
v2
α(1− v2

α)

)
=

βeα
2 sinh {βeα}

∂eα
∂v2

α︸ ︷︷ ︸
≈ 0

(18)

where εα = (ϕα|ĥmf |ϕα) are the diagonal matrix elements
of the single–particle Hamiltonian and eα is the quasi-
particle energy as defined in (12). The right–hand–side
accesses the residual interactions in the mean–field and
gap potentials. It accounts for the linear response of the
energy functionals to the thermal change of the occupa-
tion. We expect this to be a small effect and neglect the
response terms in the present treatment. Within that ap-
proximation we then obtain the standard form of the gap
equation which can be resolved as usual, yielding

v2
α =

1
2

(
1− εα − λ√

(εα − λ)2 + f2
α∆

2
α

)
. (19)

The thermal BCS scheme in natural orbitals ϕα thus re-
quires only minimal modifications as compared to the for-
malism at zero temperature. One merely needs to account
for the thermal factors in collecting the densities ρ̂ and
χ(r), see (8) and (10).

The numerical solution then proceeds as in the case
of zero temperature. Actually, we are considering here
spherical nuclei and compute the radial wavefunctions on
a coordinate–space grid using five–point finite differences
to define the derivate operators, for details see [24].

3 Results and discussion

For this first exploration, we have confined the considera-
tions to spherical nuclei which basically restricts the pool
of examples to semi–magic systems. Systematic scans over
the various possible chains of isotopes and isotones yield
all very similar effects. It thus suffices to present here the
results for one test case. The most interesting aspect for
the r–process are the two-neutron separation energies and
shell gap for the isotones with neutron number N = 82.
We will present results for these isotones. Before coming to
that, however, we want to discuss the temperature effects
as such. This will be done in two steps. First, we discuss
the interplay of pairing and temperature, and second, we



160 C. Reiß et al.: Nuclear shell gaps at finite temperatures

investigate the temperature effects on separation energies
and shell gap for the chain of Sn isotopes as test case.

There exists a puzzling manifold of Skyrme forces (we
found about 80 in the literature) from which we have to
select a few typical ones. We present here results for the
three parameterizations SkT6 [17], SkI4 [18], and SLy4
[19]. All these parameterizations have been obtained from
fits to nuclear ground–state data, binding energies, radii,
and a few selected spin–orbit splittings. The fit of force
SkI4 included even the whole electromagnetic formfactor
at low q (i.e. up to the first maximum). All three forces
provide a very good description of the gross properties
of the stable nuclei and share the basic nuclear matter
properties as binding E/A = −16 MeV, equilibrium den-
sity ρ0 = 0.16 fm−3, incompressibility 230 MeV ≤ K ≤
250 MeV, asymmetry energy 30 MeV ≤ a4 ≤ 32 MeV, and
a low sum rule enhancement factor 0 ≤ κ ≤ 0.25. The
main differences lie in the effective mass, the less promi-
nent isovector features, and in the spin–orbit coupling.
The more recent forces SkI4 and Sly4 have rather low
effective mass 0.65 ≤ m∗/m ≤ 0.69 whereas SkT6 kept
strictly the bare nucleon mass, i.e. m∗/m = 1. The forces
SkT6 and SLy4 employ the standard spin–orbit coupling
as derived from a zero–range two-body spin–orbit force [9]
whereas SkI4 accesses an extended spin–orbit functional
which was inspired by the relativistic mean field model
and which aims at a more flexible isovector part of the
spin–orbit force [18]. Both, the effective mass as well as
the spin–orbit splitting, have a strong influence on the
actual level densities and are thus important parameters
for the temperature effects to be studied. The three forces
in the sample cover the most typical variants, low versus
high effective mass and standard versus extended spin–
orbit splitting. There are, furthermore, differences in the
details of the isovector coupling leading, e.g. to somewhat
different density dependence of a4 and different surface
asymmetry. The effect of these subtle details on shell clo-
sures and extrapolations to exotic nuclei has not yet been
sufficiently explored. It is probably not very pronounced
such that the present variation of m∗/m and of spin–orbit
coupling suffices.

3.1 Basic features of thermal BCS — gaps and phase
transition

A paired state is a phase which appears only at low tem-
peratures. With increasing T , there comes a sudden break-
down of pairing. For a quantitative demonstration, one
usually parameterizes pairing by the pairing gap for which
we take here the average spectral gap [23]

〈∆〉 =
∑
α>0 fα vαuα∆α∑
α>0 fα uαvα

. (20)

The evolution of pairing with increasing temperature is
demonstrated in Fig. 1 where we show the average neu-
tron pair gap 〈∆〉 for the chain of tin isotopes. For the
mean–field energy functional, the parameterization SkI4
from [18] is employed. The curves 〈∆(T )〉 show the same
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Fig. 1. The temperature dependence of the average neutron
pair gap 〈∆n〉 scaled with A1/3 for four different tin isotopes
as indicated. The parameterization SkI4 has been used for the
underlying mean–field

pattern for all temperatures as they are well known since
long for the BCS pairing gap, see e.g. [25]. The gap resists
heating for a while and then disappears rather quickly at
a critical temperature Tc. So the overall pattern follows
in all cases a universal curve. What differs, however, in
the different isotopes is the actual value for Tc. But that
is not too surprising. The pairing gap at T = 0 depends
sensitively on the density of single–particle levels in the
vicinity of the Fermi surface and thus depends on the ac-
tual neutron and proton numbers. A smaller gap at zero
temperature translates then into a lower Tc by virtue of
the universal behavior of 〈∆(T )〉.

Figure 1 gives the impression as if the average pair
gap would systematically decrease with increasing neu-
tron number. Although this is true as a general trend, it
is an incomplete view in detail. The more systematic in-
formation is provided in Fig. 2 where we show the average
pairing gaps at T = 0 and the critical temperatures for Sn–
isotopes versus neutron number. In addition to SkI4 which
was used in the previous figure, we also present results for
the two other mean–field parameterizations in the sample,
namely SkT6 and SLy4. The strong variations with neu-
tron number are obvious. Pairing breaks down complete
at the neutron shell closures and reaches a maximum in
the mid–shell region. As one can deduce from the previous
Fig. 1, the critical temperature should closely follow the
trends of the average gap, and that is nicely corroborated
in Fig. 2. The different mean–field parameterizations, how-
ever, predict different trends in details. The pairing gaps
in the mid–shell region 50 < N < 82 do not follow a sim-
ple inverted parabola, but show substructure which is re-
lated to fluctuations in the level density that are related
to the details of the single–particle energies. These fluctu-
ations proceed differently for the different forces. Particu-
larly SkI4 shows a double peak structure with a region of
reduced level density around N = 68. The differences be-
come even more amplified when going into the regime of
neutron–rich isotopes. There the forces even predict shell
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Fig. 2. The lower panel shows the average neutron pair gap
〈∆n〉 at T = 0 and scaled with A1/3 for tin isotopes and for
three different of mean–field parameterizations as indicated.
The upper panel shows the corresponding critical temperatures
Tc

closures at different neutron numbers. The forces SkT6
and SLy4 agree an a magic N = 90 whereas SkI4 prefers
the very neutron–rich N = 112. These varying predictions
are related to the fact that any one of these shell closures
is less well developed than the standard magic numbers.
Tiny changes can then have a large effect. We see, more-
over, that the pairing gap is rather small in the small mid–
shell region 82 < N < 90. This altogether lets us expect
that temperature effects will be more pronounced in the
region of neutron–rich isotopes. The force SkT6 displays
a curious detail at N = 90 which demonstrates once more
that this is a interesting region where the shell structure
is somewhat fluctuating. The average gap (lower panel)
looks as if there were a shell closure. But the critical tem-
perature does not really drop down to zero. In fact, we
find for the average gap at N = 90 the small, but non–
zero, value 〈∆n〉A1/3 = 0.1. There is thus a very low level
density but the gap is just not large enough to call it a
subshell closure.

3.2 Two–neutron separation energies

The most prominent observables for nuclei are binding en-
ergies and differences thereof. For example, the two neu-
tron separation energy

S2n(Z,N) = EB(Z,N − 2)− EB(Z,N) (21)

characterizes the isotopic trends of the energy, hints on the
stability of a nucleus. Before going to temperature effects
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Fig. 3. The two–neutron separation energy S2n at zero temper-
ature for the chain of tin isotopes and a selection of mean–field
parameterizations as indicated, compared with experimental
values where available

on this quantity, we need to look at the typical results
from nowadays mean–field parameterizations for this ob-
servable. Figure 3 shows the S2n for the Sn isotopes com-
puted with the three Skyrme forces SkT6, SLy4, and SkI4.
All three forces provide a very good description of the nu-
clear bulk properties along the valley of stability. This can
also be seen from Fig. 3 where all three forces agree nicely
with the experimental values for N ≤ 82. But the extrap-
olation towards the neu-tron–rich isotopes comes out very
different. The size of the jump of S2n at N = 82 is much
smaller for SkT6 than for the two other forces. This fea-
ture is related to the different effective masses: SkT6 uses
m∗/m = 1 whereas SLy4 and SkI4 employ rather low val-
ues m∗/m ≈ 0.7. The further evolution is also different.
SkT6 and SLy4 have a faint shell closure at N = 90 as in-
dicated by the small jump in the S2n there, whereas SkI4
waits with the next closure until N = 112.

Figure 3 has demonstrated the typical variations of
nowadays mean–field models when extrapolated to neu--
tron–rich nuclei. These differences have an impact on the
predicted abundances in the r–process and the actual dis-
cussion is much concerned with getting more reliable the-
oretical predictions in this regime. But one needs to take
into account the fact that the actual r–processes take place
at a finite temperature of 0.1 ≤ kBT ≤ 0.4 MeV, and the
question is which variations in the S2n are produced when
changing the temperature. Figure 4 shows the S2n at var-
ious temperatures. There emerge indeed visible changes,
particularly at the side of the exotic nuclei (N ≥ 82). The
step to 0.2 MeV temperature makes still very little effect.
But from then on, one can have substantial changes which
could affect a quantitative analysis of stellar abundances.
In particular, we see that the changes often have different
sign below and above shell closure which will influence ef-
fects related to shell closure more than visible from the
S2n here.

Another dramatic effect is seen towards N ≈ 96. Al-
though the temperature effects as such may look small,
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Fig. 4. The two–neutron separation energy S2n for tin isotopes
at several finite temperatures as indicated and for two different
mean–field parameterizations (upper panel: SkI4, lower panel:
SLy4)

they drive here the S2n very close to zero and thus desta-
bilize these nuclei. The point is that the change of S2n

with temperature has about the same magnitude every-
where. But the relative effect can grow huge if the S2n as
such are small which is the case, of course, when going to
very neutron rich systems.

3.3 Two–neutron shell gaps

The most interesting points appear at shell closures which
constitute the chains of waiting–point nuclei that are im-
portant for the explanation of the final r–process abun-
dances. The “closeness” of a shell can be quantified in
terms of the two–nucleon shell gap which represents the
size of the jump of the S2n. It is thus the first difference
of the S2n and the second difference of the binding ener-
gies. Here we consider the second difference of the binding
energies, i.e. the two–neutron shell gap

δ2n = EB(Z,N + 2)− 2EB(Z,N) + EB(Z,N − 2). (22)

We now have one number to characterize each shell clo-
sure. This allows to draw the trends with temperature
which is, of course, more informative then looking at few
selected points. Figure 5 shows the δ2n(T ) at neutron shell
closures for the two Skyrme forces SkI4 and SLy4.One sees
here in detail that the results stay indeed stable up to
kBT = 0.2 MeV and start to vary quickly after that point.
The effects on the δ2n can obviously grow large even for
moderate temperatures. Consider, e.g., the shell gap at
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Fig. 5. The temperature dependence of the two neutron shell
gap at shell closures for Sn isotopes and for the two Skyrme
parameterization SkI4 (upper panel) and SLy4 (lower panel)

N = 82 and compare the change from zero to 0.3 MeV
temperature (which is a possible value in stellar scenar-
ios): the variation comes out to be 1–1.5 MeV just as large
as the varying predictions for different Skyrme forces. The
effect is even more important for the fainter shell closures
in the regime of exotic nuclei.

At first glance, one may be surprised that the shell gap
starts with increasing as function of T while one would
have expected a destabilization of the nuclei when heat-
ing. The nuclei are indeed less well bound if T grows. But
a closed–shell nucleus is more robust against this change
than its neighbors and this increases first the second dif-
ference (22). The mechanism is demonstrated in Fig. 6
which shows temperature dependence of the binding ener-
gies around shell closure. It obvious that the magicN = 82
comes latest to feel the temperature. This then gives rise
to the observed initial increase of δ2n. It is only if the
closed shell nucleus reacts to T which happens at 0.5 MeV
that the shell gap bends over to a steady decrease.

Figure 7 looks at the two-neutron shell gaps from a
different perspective. Concentrating on the N = 82 clo-
sure, the isotonic trends of the shell gap are shown for a
selection of temperatures. The upper panel shows the two-
neutron separation energies and serves as a protocol of the
stability of the isotones. Decreasing Z for fixed N drives
the samples deeper into the regime of exotic nuclei, and
the S2n shrinks correspondingly. Here we find 0.1 MeV as
the temperature up to which nothing changes. The step to
0.2 MeV already degrades the stability visibly and moves
the drip line by two units. The next step to 0.4 MeV in-
duces a further large reduction of S2n for the heavier sys-
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Fig. 7. Lower panel: The isotonic trend of the two–neutron
shell gap δ2n(Z, 82) for various temperatures as indicated and
computed with the Skyrme force SkI4. Upper panel: The cor-
responding S2n(Z, 82)

tems, but does less (and can even revert the effect) near
the drip-line. This is related to the breakdown of pairing
which reduces for a while the amount of continuum nucle-
ons and thus enhances stability. It is known, on the other
hand, that the BCS approximation exaggerates the occu-
pation of continuum states and that a full HFB treatment
would perform more reasonably in that respect. So we see
again in our consideration at finite temperature T what
has been found before at T = 0 that full HFB is needed

near the neutron drip–line [26]. The lower panel of Fig. 7
shows the isotonic trends of δ2n at various temperatures.
It is obvious that temperature effects become increasingly
important when moving away from the valley of stability
(which means here in direction of decreasing Z) such that
large effects emerge already at a temperature of kBT = 0.2
MeV.

3.4 Tail of the density distribution

Thus far we have discussed energies which are the crucial
observables defining the equilibrium distribution of nuclei.
The detailed dynamics of the r–process depends also on
reaction cross sections and it is interesting to estimate
the possible temperature effects there. A cross section is
dominated by the overall extension of the nucleus. We
have thus looked at the temperature dependence of the
radii and find no effect. Strong interaction processes may,
however, be already sensitive to the outer tail of the den-
sity distribution. To check the effect out there, we show in
Fig. 8 the neutron densities for three exotic Sn–isotopes on
a logarithmic scale. It requires either a very exotic nucleus
(N = 120) or rather large temperature (kBT ≥ 0.48 MeV)
to see any sizeable effect. Thus one can probably neglect
temperature effects on the reaction rates. The dominant
effect is related to the energies.

4 Summary and conclusions

We have considered the effect of small temperatures (kBT
< 1 MeV) on the predictions of the Skyrme–Hartree–Fock
model for binding energies, two–neutron separation en-
ergies and two–neutron shell gaps. The BCS scheme is
extended to finite temperatures using a representation
in terms of natural orbitals. This delivers a formulation
where only minimal modifications of existing SHF+BCS
codes are required. As test case, we presented mainly the
chain of Sn isotopes with an excursion to isotones with
neutron number N = 82. We find that temperature influ-
ences the two–neutron separation energies once it exceeds
kBT = 0.2 MeV. The effects go in different directions be-
low and above shell closures such that more dramatic tem-
perature dependences are seen for the two–neutron shell
gaps. The shell gaps can easily be enhanced by as much
as 2 MeV when going from 0 to 0.4 MeV. Such an effect
will have an impact on astrophysical calculations of nu-
clear abundances. We also tried to estimate the effect on
reaction cross section by looking at the change of the nu-
clear density distribution. There are only minimal effects
on this observable.
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A Correction for center–of–mass motion

The correction for spurious center–of–mass motion (7)
cannot be reduced to the densities ρ̂ and χ. We need to
compute from scratch the thermal expectation value of
the center-of-mass fluctuations. It becomes

〈P̂2
c.m.〉 =

∑
αβ>0

P2
αβ (uαvβ − vαuβ)2

(
1

1 + eβeα
1

1 + eβeβ

+
eβeα

1 + eβeα
eβeβ

1 + eβeβ

)
. (23)

The summation therein runs over all conceivable single–
particle state. But we carry explicitly only those states
which have non–vanishing occupation v2

α. It is thus nec-
essary to rearrange the terms using the closure relations
such that only occupied wavefunctions appear in the sum.
This is achieved by

〈P̂2
c.m.〉 = 2

∑
β>0

(
P2
)
β
v2
β(1− wβ)

−2
∑
αβ>0

P2
αβ

[
v2
βwα(1− wβ)

+
(
v2
αv

2
β + uαvβvαuβ

)
(1− wα)(1− wβ)

]
+2

∑
αβ>0

P2
αβ (uαvβ − vαuβ)2

wαwβ (24)

where wα = 1/
(
1 + eβeα

)
the thermal occupation weight
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is. The infinite summation over all unoccupied states is
then hidden in the matrix element of P̂2

c.m., first term on
the right hand side.
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